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Summary

Why can’t we put together a million cores and make it run a
million times faster? Parallel computing systems o�er enor-
mous potential for signi�cant runtime speedups over com-
putation by a single CPU core. However, many computa-
tional tasks cannot be e�ciently parallelized. We explore
some practical limits to achieving parallel speedups, with
reference to some classical optimization solvers that are
competitors to D-Wave quantum computers.

The runtime speedup realized from switching from se-
quential to parallel computers is captured by the fol-
lowing formula, a refinement of Amdahl’s Law [1]:1

T(P) = (1− α) · Tseq + α · Tpar(1/P) + Tover(P).

The formula says that the time to run a process on P
parallel cores depends on: (a) what proportion of the
code (1− α) is inherently sequential; (b) what propor-
tion (α) can be divided among the P cores; and (c) how
much parallel overhead accrues. Overhead comes from
such things as memory access, synchronization, and
network communication, which we refer to generically
as remote access to data that is not local to a given core.
The function Tover(P) may be constant or increasing in
P.

Relative parallel speedup is defined as the time to run on
one core divided by the time to run on P cores, that
is, T(1)/T(P). Absolute parallel speedup is TCPU/T(P),
where TCPU is the time for the fastest known single-

1The formula is used here as a conceptual model only: real code
cannot always be partitioned this way into three neat categories.

CPU implementation, while T(P) may run on a differ-
ent platform such as a graphics processing unit (GPU).

Figure 1 shows how speedup depends on these time
components. The diagonal black line represents the
ideal—perfect relative speedup—when α = 1 and
Tover(P) = 0. Other curves show less-than-ideal
speedup, when α < 1 or Tover(P) > 0, or both. The non-
ideal curves have constant upper limits: if α = .95, then
5 percent (1/20th) of the code cannot be made faster,
and relative speedup never rises above 20, regardless
of the number of cores available. If overhead increases
with P, parallel speedup can turn into parallel slow-
down, as illustrated by the blue curve.

The dashed horizontal line marks time for the fast se-
quential code: here, TCPU is 25 times faster than T(1)
on one GPU core. This gap creates a lower bound on
the number of parallel cores needed to realize absolute
speedup, as shown by the brown curve, which does not
rise above the horizontal line until P = 35. Curves that
stay below the dashed line correspond to cases where
absolute parallel speedup is not possible.

In the real world, the viability of realizing parallel
speedup often boils down to the balance of constant
factors attached to component times, which often de-
pends on the type of remote access that is needed.
Overhead tends to grow as a step function, jumping
whenever P crosses a boundary to a bigger system with
higher communication overhead. This creates speedup
curves that step down when P crosses boundaries, il-
lustrated by the green curve in Figure 1.

Finally, parallel speedup can be limited by typical use.
If a given code loop iterates M times, then paralleliza-
tion yields speedups for P ≤ M, but nothing further.
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Figure 1: Relative parallel speedup (colored curves), can be less than the ideal shown by the black diagonal line. Absolute
parallel speedup compares parallel times to the fastest sequential code (horizontal dotted line).

Parallelizing Ising model solvers. Several state-of-the-
art solvers for Ising model problems have been tested
in comparison to D-Wave quantum processing units
(QPUs). Here are some observations about their par-
allelizability.

• The solvers of interest (including the QPU) all have
a sampling loop that is easy to parallelize. With
typical solution times on the scale of milliseconds,
parallel sampling can yield speedups up to about
two orders of magnitude before communication
overhead starts to dominate.

• We have implemented [2] some solvers using
state-of-the-art GPU platforms with 2048 cores.
Taking one (called simulated annealing) as an ex-
ample, we see relative parallel speedup by factors
near 256 (less than the ideal of 2048), and abso-
lute parallel speedup (including parallel sampling)
around 1000 (compared to a CPU version with no
parallel sampling). Increasing the number of GPU
cores does not yield additional speedups, because
of the stepping effect described earlier.

• A strong competitor known as the Hamze–de
Frietas–Selby (HFS) method cannot run efficiently
on a GPU due to high remote access overhead.

More importantly, parallellization does not improve
the quality of solutions returned by these solvers. That
task falls to a specific code loop in each one, which can-
not be efficiently parallelized, and which creates large
computational bottlenecks. The number of iterations
needed for this loop to produce solutions of suitable
quality tends to grow exponentially with input size.

Going forward, practical constraints will continue to
limit gains from parallel speedup on classical comput-
ing platforms. Significant computational bottlenecks
will continue to grow. Performance breakthroughs in
this area will be driven by access to fundamentally new
types of algorithmic resources, such as those provided
by quantum computers.

References
[1] M. Horoi and R. J. Enbody, “Using Amdahl’s Law as a metric

to drive code parallelization: Two case studies,” The Interna-
tional Journal of High Performance Computing Applications, vol.
15, no. 1, pp. 34–41, 2001.

[2] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A. D. King, M. M.
Nevisi, J. P. Hilton, and C. C. McGeoch, “Quantum anneal-
ing amid local ruggedness and global frustration,” D-Wave
Technical Report Series, no. 14-1003A-B, 2016.

Copyright © D-Wave Systems Inc. Limits on Parallel Speedup for Classical Ising Model Solvers 2


