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ABSTRACT 
 
Generalized dynamic portfolio optimization problems have no known closed-form solution. 
These problems are particularly relevant to large asset managers, as the costs from excessive 

turnover and implementation shortfall may critically erode the profitability of their investment 
strategies. 
 
In this brief note we demonstrate how this financial problem, intractable to modern 

supercomputers, can be reformulated as an integer optimization problem. Such representation 
makes it amenable to quantum computers. 
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1. INTRODUCTION 
A supercomputer is a mainframe computer able to perform an extremely large number of floating 
point operations per second (FLOPS). This is generally achieved following one of two 

approaches. In the first approach, a problem is divided into many small problems that can be 
solved in parallel. This is the strategy used by distributed computing or hyper-threaded 
architectures, such as cloud systems or GPUs. The second approach takes advantage of the 
topological configuration of a system to save time in I/O and other intensive operations. This is 

the key advantage of computer clusters. Moore’s law, which states that the number of transistors 
on a chip will double approximately every two years, means that a system qualifies as a 
supercomputer for a relatively short period of time. The TOP500 project keeps track of the 500 
fastest supercomputers in the world. As of June of 2014, 233 of these systems are located in the 

United States, and 76 in China. 
 
Combinatorial optimization problems can be described as problems where there is a finite 
number of feasible solutions, which result from combining the discrete values of a finite number 

of variables. As the number of feasible combinations grows, an exhaustive search becomes 
impractical. The traveling salesman problem is an example of a combinatorial optimization 
problem that is known to be NP-hard, i.e. the category of problems that are at least as hard as the 
hardest problems solvable is nondeterministic polynomial time. 

 
What makes an exhaustive search impractical is that standard computers evaluate and store the 
feasible solutions sequentially. But what if we could evaluate and store all feasible solutions at 
once? That is the goal of quantum computers. Whereas the bits of a standard computer can only 

adopt one of two possible states ({0,1}) at once, quantum computers rely on qubits, which are 
memory elements that may hold a linear superposition of both states. In theory, quantum 

computers can accomplish this thanks to quantum mechanics. A qubit can support currents 
flowing in two directions at once, hence providing the desired superposition. D-Wave, a 
commercial quantum computer designer, is planning to produce a 2048-qubit system in the year 
2015. This linear superposition property is what makes quantum computers ideally suited for 

solving NP-hard combinatorial optimization problems. 
 
In this note we will show how a dynamic portfolio optimization problem subject to generic 
transaction cost functions can be represented as a combinatorial optimization problem, tractable 

by quantum computers. Unlike Garleanu and Pedersen [2012], we will not assume that the 
returns are IID Normal. This problem is particularly relevant to large asset managers, as the costs 
from excessive turnover and implementation shortfall may critically erode the profitability of 
their investment strategies. 

 
 

2. THE OBJECTIVE FUNCTION 
Consider a set on assets 𝑋 = {𝑥𝑖}, 𝑖 = 1,… ,𝑁, with returns following a multivariate Normal 

distribution at each time horizon ℎ = 1, …, 𝐻, with varying mean and variance. We will assume 
that the returns are multivariate Normal, however not identically distributed through time. At a 

particular horizon h, we have a forecasted mean 𝝁𝒉, a forecasted variance 𝑽𝒉 and a forecasted 
transaction cost function 𝜏ℎ[𝝎]. 
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We define a trading trajectory as a NxH matrix 𝝎 that determines the proportion of capital 

allocated to each of the N assets over each of the H horizons. This means that, given a trading 
trajectory 𝝎, we can compute a vector of expected investment returns r, as 
 

 𝒓 = 𝑑𝑖𝑎𝑔(𝝁𝑻𝝎)− 𝜏[𝝎] (1) 
 

where 𝜏[𝝎] can adopt any functional form. Without loss of generality, consider the following:  

 𝜏0[𝝎] = ∑ 𝑐𝑛,1√|𝜔𝑛,1 −𝜔𝑛
∗ |𝑁

𝑛=1 . 

 𝜏ℎ[𝝎] = ∑ 𝑐𝑛,ℎ√|𝜔𝑛,ℎ−𝜔𝑛,ℎ−1|
𝑁
𝑛=1 , for ℎ = 1,… , 𝐻. 

 𝜔𝑛
∗  is the initial holding of instrument n, 𝑛 = 1,… , 𝑁. 

 
𝜏[𝝎] is a Hx1 vector of transaction costs. In words, the transaction costs associated with each 

asset is the sum of the square roots of the changes in capital allocations, re-scaled by an asset-

specific factor {𝑐𝑛,ℎ} that changes with h. Thus, a Nx1 vector C determines the relative 

transaction cost across assets. 
 

The Sharpe Ratio (SR) associated with r can be computed as (𝝁𝒉  being net of the risk-free rate) 
 

 
𝑆𝑅[𝒓] =

∑ 𝝁𝒉
𝑻𝝎𝒉

𝐻
ℎ=1

√∑ 𝝎𝒉
𝑻𝑽𝒉𝝎𝒉

𝐻
ℎ=1

 (2) 
 

 
 

3. THE PROBLEM 
We would like to compute the optimal trading trajectory that solves the problem 
 

 max
𝝎
 𝑆𝑅[𝒓]

s. t. :∑ |𝜔𝑖,ℎ| = 1
𝑁

𝑖=1
, ∀ℎ = 1, …, 𝐻

 
(3) 

 

 

Note that non-continuous transaction costs are embedded in 𝒓. Compared to standard portfolio 
optimization applications, this is not a convex (quadratic) programming problem for at least three 
reasons: First, returns are not identically distributed, for 𝝁𝒉 and 𝑽𝒉 change with h. Second, 

transaction costs 𝜏[𝝎]ℎ are non-continuous and changing with h. Third, the objective function 

𝑆𝑅[𝒓] is not convex. Next, we will show how to calculate solutions without making use of any 
functional property of the objective function (hence the “generalized” nature of this approach). 
 

 

4. AN INTEGER OPTIMIZATION APPROACH 
The generality of this problem makes is intractable to standard convex optimization techniques. 
Our solution strategy is to discretize it so that it becomes amenable to integer optimization. This 

in turn allows us to use quantum computing technology to find the optimal solution. 
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4.1. PIGEONHOLE PARTITIONS 
Suppose that we count with K units of capital, to be allocated among the N assets. This is a 
classic integer partitioning problem studied in number theory and combinatorics, and by Hardy 

and Ramanujan in particular, see Johansson [2012]. However, in our particular problem, order is 
relevant to the partition. For example, if K=6 and N=3, partitions (1,2,3) and (3,2,1) must be 
treated as different. This means that we must consider all distinct permutations of each partition 
(obviously (2,2,2) does not need to be permutated). Next, we provide an efficient algorithm to 

generate the set of all partitions, 𝑝𝐾,𝑁 = {{𝑝𝑖}|𝑝𝑖 ∈ ℤ, ∑ 𝑝𝑖
𝑁
𝑖=1 = 𝐾}. 

 

from itertools import combinations_with_replacement 
#------------------------------------------------------------------------------ 
def pigeonHole(k,n): 
    # Pigeonhole problem (organize k objects in n slots) 
    for j in combinations_with_replacement(xrange(n),k): 
        r=[0]*n 
        for i  in j: 
            r[i]+=1 
        yield r 

Snippet 1 – Partitions of k objects into n slots 

 

4.2. FEASIBLE STATIC SOLUTIONS 
We would like to compute the set of all feasible solutions at any given horizon h, which we 

denote Ω. Consider a partition of K units into N assets, 𝑝𝐾,𝑁. For each  ith partition {𝑝𝑖}𝑖=1,…,𝑁, 

we can define a vector of absolute weights such that |𝜔𝑖| =
1

𝐾
𝑝𝑖 , where ∑ |𝜔𝑖| = 1

𝑁
𝑖=1  (the full-

investment constraint). This full-investment constraint implies that every weight can be either 

positive or negative, so for every vector of absolute weights {|𝜔𝑖|}𝑖=1,…,𝑁 we can generate 2𝑁 

vectors of (signed) weights. This is accomplished by multiplying the items in {|𝜔𝑖|}𝑖=1,…,𝑁 with 

the items of the Cartesian product of {−1,1}  with N repetitions. Snippet 2 shows how to generate 

the set Ω of all vectors of weights associated with all partitions, Ω = {{
𝑠

𝐾
𝑝𝑖} |𝑠 ∈

{−1,1}x… x{−1,1}⏟            
𝑁

, 𝑝𝑖 ∈ 𝑝
𝐾,𝑁}. 

 

import numpy as np 
from itertools import product 
#------------------------------------------------------------------------------ 
def getAllWeights(k,n): 
    #1) Generate partitions 
    parts,w=pigeonHole(k,n),None 
    #2) Go through partitions 
    for part_ in parts: 
        w_=np.array(part_)/float(k) # abs(weight) vector 
        for prod_ in product([-1,1],repeat=n): # add sign 
            w_signed_=(w_*prod_).reshape(-1,1) 
            if w is None:w=w_signed_.copy() 
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            else:w=np.append(w,w_signed_,axis=1) 
    return w 

Snippet 2 – Set Ω of all vectors associated with all partitions 

 

4.3. EVALUATING TRAJECTORIES 
Given the set of all vectors Ω, we define the set of all possible trajectories Φ as the Cartesian 

product of Ω with H repetitions. That is, Φ = {{Ωℎ}ℎ=1,…,𝐻|Ωℎ ∈ Ω}. Then, for every trajectory 

we can evaluate its transaction costs, SR, and select the trajectory with optimal performance 
across Φ. Snippet 3 implements this functionality. The object params  is a list of dictionaries that 

contain the values of 𝑪, 𝝁, V.  
 

import numpy as np 
from itertools import product 
#------------------------------------------------------------------------------ 
def evalTCosts(w,params): 
    # Compute t-costs of a particular trajectory 
    tcost=np.zeros(w.shape[1]) 
    w_=np.zeros(shape=w.shape[0]) 
    for i  in range(tcost.shape[0]): 
        c_=params[i]['c'] 
        tcost[i]=(c_*abs(w[:,i]-w_)**.5).sum() 
        w_=w[:,i].copy() 
    return tcost 
#------------------------------------------------------------------------------ 
def evalSR(params,w,tcost): 
    # Evaluate SR over multiple horizons 
    mean,cov=0,0 
    for h in range(w.shape[1]): 
        params_=params[h] 
        mean+=np.dot(w[:,h].T,params_['mean'])[0]-tcost[h] 
        cov+=np.dot(w[:,h].T,np.dot(params_['cov'],w[:,h])) 
    sr=mean/cov**.5 
    return sr 
#------------------------------------------------------------------------------ 
def dynOptPort(params,k=None): 
    # Dynamic optimal portfolio 
    #1) Generate partitions 
    if k is None:k=params[0]['mean'].shape[0] 
    n=params[0]['mean'].shape[0] 
    w_all,sr=getAllWeights(k,n),None 
    #2) Generate trajectories as cartesian products of weights with n repetitions 
    for prod_ in product(w_all.T,repeat=len(params)): 
        w_=np.array(prod_).T # concatenate product into a trajectory  
        tcost_=evalTCosts(w_,params) 
        sr_=evalSR(params,w_,tcost_) # evaluate trajectory 
        if sr is None or sr<sr_: # store trajectory if better 
            sr,w=sr_,w_.copy() 
    return w 

Snippet 3 – Evaluating all trajectories 
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Note that this procedure selects an optimally global trajectory without relying on convex 
optimization. A solution will be found even if the covariance matrices are ill-conditioned, 
transaction cost functions are non-continuous, etc. The price we pay for this generality is that 

calculating the solution is extremely computationally intensive. Indeed, evaluating all trajectories 
is a travelling-salesman problem. Digital computers are inadequate for this sort of NP-hard, 
however quantum computers have the advantage of evaluating multiple solutions at once, thanks 
to the property of linear superposition. 

 
 

5. A NUMERICAL EXAMPLE 
Here we illustrate how the global optimum can be found in practice, using a digital computer. A 

quantum computer would evaluate all trajectories at once, whereas the digital computer does this 
sequentially. First, we generate H vectors of means, covariance matrices and transaction cost 
factors, C, 𝝁, V. These variables are stored in a params  list.  
 

import numpy as np 
#------------------------------------------------------------------------------ 
def genMean(size): 
    # Generate a random vector of means 
    rMean=np.random.normal(size=(size,1)) 
    return rMean 
#------------------------------------------------------------------------------ 
def genCovar(size): 
    # Generate a random covariance matrix, as <A,A.T> of a random matrix 
    rMat=np.random.rand(size,size) 
    rCov=np.dot(rMat,rMat.T) 
    return rCov 
#------------------------------------------------------------------------------ 
    #1) Parameters 
    size,horizon=3,2 
    params=[] 
    for h in range(horizon): 
        mean_,cov_=genMean(size),genCovar(size) 
        c_=np.random.uniform(size=cov_.shape[0])*np.diag(cov_)**.5 
        params.append({'mean':mean_,'cov':cov_,'c':c_}) 

Snippet 4 – Generate the problem’s parameters 
 
Second, we can compute the performance of the trajectory that results from local (static) optima. 

 

import numpy as np 
#------------------------------------------------------------------------------ 
def statOptPortf(cov,a): 
    # Static optimal porftolio 
    # Solution to the "unconstrained" portfolio optimization problem 
    cov_inv=np.linalg.inv(cov) 
    w=np.dot(cov_inv,a) 
    w/=np.dot(np.dot(a.T,cov_inv),a) # np.dot(w.T,a)==1 
    w/=abs(w).sum() # re-scale for full investment 
    return w 
#------------------------------------------------------------------------------ 
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#2) Static optimal portfolios 
w_stat=None 
for params_ in params: 
    w_=statOptPortf(cov=params_['cov'],a=params_['mean']) 
    if w_stat is None:w_stat=w_.copy() 
    else:w_stat=np.append(w_stat,w_,axis=1) 
tcost_stat=evalTCosts(w_stat,params) 
sr_stat=evalSR(params,w_stat,tcost_stat) 
print 'static SR:',sr_stat 

Snippet 5 – Compute and evaluate the static solution 
 

Third, we compute the performance associated with the global dynamic optimal trajectory. 

 

import numpy as np 
#------------------------------------------------------------------------------ 
#3) Dynamic optimal portfolios 
w_dyn=dynOptPort(params) 
tcost_dyn=evalTCosts(w_dyn,params) 
sr_dyn=evalSR(params,w_dyn,tcost_dyn) 
print 'dynamic SR:',sr_dyn 

Snippet 6 – Compute and evaluate the dynamic solution 

 
The full code is listed in the appendix 
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APPENDIX 
 
 

A.1. INTEGER GLOBAL DYNAMIC PORTFOLIO OPTIMIZATION 
This python 2.7 code implements the numerical example discussed in Section 5. The only 
dependencies are numpy and itertools. 
 

# On 20150607 by MLdP <lopezdeprado@lbl.gov> 
# Example for global dynamic optimization 
import numpy as np 
from itertools import combinations_with_replacement,product 
#------------------------------------------------------------------------------ 
def genMean(size): 
    # Generate a random vector of means 
    rMean=np.random.normal(size=(size,1)) 
    return rMean 
#------------------------------------------------------------------------------ 
def genCovar(size): 
    # Generate a random covariance matrix, as <A,A.T> of a random matrix 
    rMat=np.random.rand(size,size) 
    rCov=np.dot(rMat,rMat.T) 
    return rCov 
#------------------------------------------------------------------------------ 
def evalTCosts(w,params): 
    # Compute t-costs of a particular trajectory 
    tcost=np.zeros(w.shape[1]) 
    w_=np.zeros(shape=w.shape[0]) 
    for i  in range(tcost.shape[0]): 
        c_=params[i]['c'] 
        tcost[i]=(c_*abs(w[:,i]-w_)**.5).sum() 
        w_=w[:,i].copy() 
    return tcost 
#------------------------------------------------------------------------------ 
def evalSR(params,w,tcost): 
    # Evaluate SR over multiple horizons 
    mean,cov=0,0 
    for h in range(w.shape[1]): 
        params_=params[h] 
        mean+=np.dot(w[:,h].T,params_['mean'])[0]-tcost[h] 
        cov+=np.dot(w[:,h].T,np.dot(params_['cov'],w[:,h])) 
    sr=mean/cov**.5 
    return sr 
#------------------------------------------------------------------------------ 
def pigeonHole(k,n): 
    # Pigeonhole problem (organize k objects in n slots) 
    for j in combinations_with_replacement(xrange(n),k): 
        r=[0]*n 
        for i  in j: 
            r[i]+=1 
        yield r 
#------------------------------------------------------------------------------ 
def statOptPortf(cov,a): 
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    # Static optimal porftolio 
    # Solution to the "unconstrained" portfolio optimization problem 
    cov_inv=np.linalg.inv(cov) 
    w=np.dot(cov_inv,a) 
    w/=np.dot(np.dot(a.T,cov_inv),a) # np.dot(w.T,a)==1 
    w/=abs(w).sum() # re-scale for full investment 
    return w 
#------------------------------------------------------------------------------ 
def getAllWeights(k,n): 
    #1) Generate partitions 
    parts,w=pigeonHole(k,n),None 
    #2) Go through partitions 
    for part_ in parts: 
        w_=np.array(part_)/float(k) # abs(weight) vector 
        for prod_ in product([-1,1],repeat=n): # add sign 
            w_signed_=(w_*prod_).reshape(-1,1) 
            if w is None:w=w_signed_.copy() 
            else:w=np.append(w,w_signed_,axis=1) 
    return w 
#------------------------------------------------------------------------------ 
def dynOptPort(params,k=None): 
    # Dynamic optimal portfolio 
    #1) Generate partitions 
    if k is None:k=params[0]['mean'].shape[0] 
    n=params[0]['mean'].shape[0] 
    w_all,sr=getAllWeights(k,n),None 
    #2) Generate trajectories as cartesian products of weights with n repetitions 
    for prod_ in product(w_all.T,repeat=len(params)): 
        w_=np.array(prod_).T # concatenate product into a trajectory  
        tcost_=evalTCosts(w_,params) 
        sr_=evalSR(params,w_,tcost_) # evaluate trajectory 
        if sr is None or sr<sr_: # store trajectory if better 
            sr,w=sr_,w_.copy() 
    return w 
#------------------------------------------------------------------------------ 
def main(): 
    #1) Parameters 
    size,horizon=3,2 
    params=[] 
    for h in range(horizon): 
        mean_,cov_=genMean(size),genCovar(size) 
        c_=np.random.uniform(size=cov_.shape[0])*np.diag(cov_)**.5 
        params.append({'mean':mean_,'cov':cov_,'c':c_}) 
    #2) Static optimal portfolios 
    w_stat=None 
    for params_ in params: 
        w_=statOptPortf(cov=params_['cov'],a=params_['mean']) 
        if w_stat is None:w_stat=w_.copy() 
        else:w_stat=np.append(w_stat,w_,axis=1) 
    tcost_stat=evalTCosts(w_stat,params) 
    sr_stat=evalSR(params,w_stat,tcost_stat) 
    print 'static SR:',sr_stat 
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    #3) Dynamic optimal portfolios 
    w_dyn=dynOptPort(params) 
    tcost_dyn=evalTCosts(w_dyn,params) 
    sr_dyn=evalSR(params,w_dyn,tcost_dyn) 
    print 'dynamic SR:',sr_dyn 
    return 
#------------------------------------------------------------------------------ 
if __name__=='__main__':main() 

Snippet 7 – Full implementation of the integer global dynamic optimization problem 
 


