

GENERALIZED OPTIMAL TRADING TRAJECTORIES:

A FINANCIAL QUANTUM COMPUTING APPLICATION

Marcos López de Prado †

This version: June 7, 2015

FIRST DRAFT – DO NOT CITE WITHOUT THE AUTHOR’S PERMISSION

† Senior Managing Director, Guggenheim Partners, New York, NY 10017. Research Fellow, Computational
Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. E-mail: lopezdeprado@lbl.gov,

Website: www.QuantResearch.org

I would like to acknowledge useful comments from David H. Bailey (Lawrence Berkeley National Laboratory), José

Blanco (Credit Suisse), Jonathan M. Borwein (University of Newcastle), Peter Carr (Morgan Stanley, NYU),
Matthew D. Foreman (University of California, Irvine), Phil Goddard (1QBit), Andrew Landon (1QBit), Riccardo

Rebonato (PIMCO, University of Oxford), Luis Viceira (HBS) and Jim Qiji Zhu (Western Michigan University).

The statements made in this communication are strictly those of the authors and do not represent the views of

Guggenheim Partners or its affiliates. No investment advice or particular course of action is recommended. All
rights reserved.

mailto:lopezdeprado@lbl.gov
http://www.quantresearch.org/

2

GENERALIZED OPTIMAL TRADING TRAJECTORIES:

A FINANCIAL QUANTUM COMPUTING APPLICATION

ABSTRACT

Generalized dynamic portfolio optimization problems have no known closed-form solution.
These problems are particularly relevant to large asset managers, as the costs from excessive

turnover and implementation shortfall may critically erode the profitability of their investment
strategies.

In this brief note we demonstrate how this financial problem, intractable to modern

supercomputers, can be reformulated as an integer optimization problem. Such representation
makes it amenable to quantum computers.

Keywords: High-performance computing, integer optimization, quantum computing, adiabatic
process.

JEL Classification: G0, G1, G2, G15, G24, E44.

AMS Classification: 91G10, 91G60, 91G70, 62C, 60E.

3

1. INTRODUCTION
A supercomputer is a mainframe computer able to perform an extremely large number of floating
point operations per second (FLOPS). This is generally achieved following one of two

approaches. In the first approach, a problem is divided into many small problems that can be
solved in parallel. This is the strategy used by distributed computing or hyper-threaded
architectures, such as cloud systems or GPUs. The second approach takes advantage of the
topological configuration of a system to save time in I/O and other intensive operations. This is

the key advantage of computer clusters. Moore’s law, which states that the number of transistors
on a chip will double approximately every two years, means that a system qualifies as a
supercomputer for a relatively short period of time. The TOP500 project keeps track of the 500
fastest supercomputers in the world. As of June of 2014, 233 of these systems are located in the

United States, and 76 in China.

Combinatorial optimization problems can be described as problems where there is a finite
number of feasible solutions, which result from combining the discrete values of a finite number

of variables. As the number of feasible combinations grows, an exhaustive search becomes
impractical. The traveling salesman problem is an example of a combinatorial optimization
problem that is known to be NP-hard, i.e. the category of problems that are at least as hard as the
hardest problems solvable is nondeterministic polynomial time.

What makes an exhaustive search impractical is that standard computers evaluate and store the
feasible solutions sequentially. But what if we could evaluate and store all feasible solutions at
once? That is the goal of quantum computers. Whereas the bits of a standard computer can only

adopt one of two possible states ({0,1}) at once, quantum computers rely on qubits, which are
memory elements that may hold a linear superposition of both states. In theory, quantum

computers can accomplish this thanks to quantum mechanics. A qubit can support currents
flowing in two directions at once, hence providing the desired superposition. D-Wave, a
commercial quantum computer designer, is planning to produce a 2048-qubit system in the year
2015. This linear superposition property is what makes quantum computers ideally suited for

solving NP-hard combinatorial optimization problems.

In this note we will show how a dynamic portfolio optimization problem subject to generic
transaction cost functions can be represented as a combinatorial optimization problem, tractable

by quantum computers. Unlike Garleanu and Pedersen [2012], we will not assume that the
returns are IID Normal. This problem is particularly relevant to large asset managers, as the costs
from excessive turnover and implementation shortfall may critically erode the profitability of
their investment strategies.

2. THE OBJECTIVE FUNCTION
Consider a set on assets 𝑋 = {𝑥𝑖}, 𝑖 = 1,… ,𝑁, with returns following a multivariate Normal

distribution at each time horizon ℎ = 1, …, 𝐻, with varying mean and variance. We will assume
that the returns are multivariate Normal, however not identically distributed through time. At a

particular horizon h, we have a forecasted mean 𝝁𝒉, a forecasted variance 𝑽𝒉 and a forecasted
transaction cost function 𝜏ℎ[𝝎].

4

We define a trading trajectory as a NxH matrix 𝝎 that determines the proportion of capital

allocated to each of the N assets over each of the H horizons. This means that, given a trading
trajectory 𝝎, we can compute a vector of expected investment returns r, as

 𝒓 = 𝑑𝑖𝑎𝑔(𝝁𝑻𝝎)− 𝜏[𝝎] (1)

where 𝜏[𝝎] can adopt any functional form. Without loss of generality, consider the following:

 𝜏0[𝝎] = ∑ 𝑐𝑛,1√|𝜔𝑛,1 −𝜔𝑛
∗ |𝑁

𝑛=1 .

 𝜏ℎ[𝝎] = ∑ 𝑐𝑛,ℎ√|𝜔𝑛,ℎ−𝜔𝑛,ℎ−1|
𝑁
𝑛=1 , for ℎ = 1,… , 𝐻.

 𝜔𝑛
∗ is the initial holding of instrument n, 𝑛 = 1,… , 𝑁.

𝜏[𝝎] is a Hx1 vector of transaction costs. In words, the transaction costs associated with each

asset is the sum of the square roots of the changes in capital allocations, re-scaled by an asset-

specific factor {𝑐𝑛,ℎ} that changes with h. Thus, a Nx1 vector C determines the relative

transaction cost across assets.

The Sharpe Ratio (SR) associated with r can be computed as (𝝁𝒉 being net of the risk-free rate)

𝑆𝑅[𝒓] =

∑ 𝝁𝒉
𝑻𝝎𝒉

𝐻
ℎ=1

√∑ 𝝎𝒉
𝑻𝑽𝒉𝝎𝒉

𝐻
ℎ=1

 (2)

3. THE PROBLEM
We would like to compute the optimal trading trajectory that solves the problem

 max
𝝎
 𝑆𝑅[𝒓]

s. t. :∑ |𝜔𝑖,ℎ| = 1
𝑁

𝑖=1
, ∀ℎ = 1, …, 𝐻

(3)

Note that non-continuous transaction costs are embedded in 𝒓. Compared to standard portfolio
optimization applications, this is not a convex (quadratic) programming problem for at least three
reasons: First, returns are not identically distributed, for 𝝁𝒉 and 𝑽𝒉 change with h. Second,

transaction costs 𝜏[𝝎]ℎ are non-continuous and changing with h. Third, the objective function

𝑆𝑅[𝒓] is not convex. Next, we will show how to calculate solutions without making use of any
functional property of the objective function (hence the “generalized” nature of this approach).

4. AN INTEGER OPTIMIZATION APPROACH
The generality of this problem makes is intractable to standard convex optimization techniques.
Our solution strategy is to discretize it so that it becomes amenable to integer optimization. This

in turn allows us to use quantum computing technology to find the optimal solution.

5

4.1. PIGEONHOLE PARTITIONS
Suppose that we count with K units of capital, to be allocated among the N assets. This is a
classic integer partitioning problem studied in number theory and combinatorics, and by Hardy

and Ramanujan in particular, see Johansson [2012]. However, in our particular problem, order is
relevant to the partition. For example, if K=6 and N=3, partitions (1,2,3) and (3,2,1) must be
treated as different. This means that we must consider all distinct permutations of each partition
(obviously (2,2,2) does not need to be permutated). Next, we provide an efficient algorithm to

generate the set of all partitions, 𝑝𝐾,𝑁 = {{𝑝𝑖}|𝑝𝑖 ∈ ℤ, ∑ 𝑝𝑖
𝑁
𝑖=1 = 𝐾}.

from itertools import combinations_with_replacement
#--
def pigeonHole(k,n):
 # Pigeonhole problem (organize k objects in n slots)
 for j in combinations_with_replacement(xrange(n),k):
 r=[0]*n
 for i in j:
 r[i]+=1
 yield r

Snippet 1 – Partitions of k objects into n slots

4.2. FEASIBLE STATIC SOLUTIONS
We would like to compute the set of all feasible solutions at any given horizon h, which we

denote Ω. Consider a partition of K units into N assets, 𝑝𝐾,𝑁. For each ith partition {𝑝𝑖}𝑖=1,…,𝑁,

we can define a vector of absolute weights such that |𝜔𝑖| =
1

𝐾
𝑝𝑖 , where ∑ |𝜔𝑖| = 1

𝑁
𝑖=1 (the full-

investment constraint). This full-investment constraint implies that every weight can be either

positive or negative, so for every vector of absolute weights {|𝜔𝑖|}𝑖=1,…,𝑁 we can generate 2𝑁

vectors of (signed) weights. This is accomplished by multiplying the items in {|𝜔𝑖|}𝑖=1,…,𝑁 with

the items of the Cartesian product of {−1,1} with N repetitions. Snippet 2 shows how to generate

the set Ω of all vectors of weights associated with all partitions, Ω = {{
𝑠

𝐾
𝑝𝑖} |𝑠 ∈

{−1,1}x… x{−1,1}⏟
𝑁

, 𝑝𝑖 ∈ 𝑝
𝐾,𝑁}.

import numpy as np
from itertools import product
#--
def getAllWeights(k,n):
 #1) Generate partitions
 parts,w=pigeonHole(k,n),None
 #2) Go through partitions
 for part_ in parts:
 w_=np.array(part_)/float(k) # abs(weight) vector
 for prod_ in product([-1,1],repeat=n): # add sign
 w_signed_=(w_*prod_).reshape(-1,1)
 if w is None:w=w_signed_.copy()

6

 else:w=np.append(w,w_signed_,axis=1)
 return w

Snippet 2 – Set Ω of all vectors associated with all partitions

4.3. EVALUATING TRAJECTORIES
Given the set of all vectors Ω, we define the set of all possible trajectories Φ as the Cartesian

product of Ω with H repetitions. That is, Φ = {{Ωℎ}ℎ=1,…,𝐻|Ωℎ ∈ Ω}. Then, for every trajectory

we can evaluate its transaction costs, SR, and select the trajectory with optimal performance
across Φ. Snippet 3 implements this functionality. The object params is a list of dictionaries that

contain the values of 𝑪, 𝝁, V.

import numpy as np
from itertools import product
#--
def evalTCosts(w,params):
 # Compute t-costs of a particular trajectory
 tcost=np.zeros(w.shape[1])
 w_=np.zeros(shape=w.shape[0])
 for i in range(tcost.shape[0]):
 c_=params[i]['c']
 tcost[i]=(c_*abs(w[:,i]-w_)**.5).sum()
 w_=w[:,i].copy()
 return tcost
#--
def evalSR(params,w,tcost):
 # Evaluate SR over multiple horizons
 mean,cov=0,0
 for h in range(w.shape[1]):
 params_=params[h]
 mean+=np.dot(w[:,h].T,params_['mean'])[0]-tcost[h]
 cov+=np.dot(w[:,h].T,np.dot(params_['cov'],w[:,h]))
 sr=mean/cov**.5
 return sr
#--
def dynOptPort(params,k=None):
 # Dynamic optimal portfolio
 #1) Generate partitions
 if k is None:k=params[0]['mean'].shape[0]
 n=params[0]['mean'].shape[0]
 w_all,sr=getAllWeights(k,n),None
 #2) Generate trajectories as cartesian products of weights with n repetitions
 for prod_ in product(w_all.T,repeat=len(params)):
 w_=np.array(prod_).T # concatenate product into a trajectory
 tcost_=evalTCosts(w_,params)
 sr_=evalSR(params,w_,tcost_) # evaluate trajectory
 if sr is None or sr<sr_: # store trajectory if better
 sr,w=sr_,w_.copy()
 return w

Snippet 3 – Evaluating all trajectories

7

Note that this procedure selects an optimally global trajectory without relying on convex
optimization. A solution will be found even if the covariance matrices are ill-conditioned,
transaction cost functions are non-continuous, etc. The price we pay for this generality is that

calculating the solution is extremely computationally intensive. Indeed, evaluating all trajectories
is a travelling-salesman problem. Digital computers are inadequate for this sort of NP-hard,
however quantum computers have the advantage of evaluating multiple solutions at once, thanks
to the property of linear superposition.

5. A NUMERICAL EXAMPLE
Here we illustrate how the global optimum can be found in practice, using a digital computer. A

quantum computer would evaluate all trajectories at once, whereas the digital computer does this
sequentially. First, we generate H vectors of means, covariance matrices and transaction cost
factors, C, 𝝁, V. These variables are stored in a params list.

import numpy as np
#--
def genMean(size):
 # Generate a random vector of means
 rMean=np.random.normal(size=(size,1))
 return rMean
#--
def genCovar(size):
 # Generate a random covariance matrix, as <A,A.T> of a random matrix
 rMat=np.random.rand(size,size)
 rCov=np.dot(rMat,rMat.T)
 return rCov
#--
 #1) Parameters
 size,horizon=3,2
 params=[]
 for h in range(horizon):
 mean_,cov_=genMean(size),genCovar(size)
 c_=np.random.uniform(size=cov_.shape[0])*np.diag(cov_)**.5
 params.append({'mean':mean_,'cov':cov_,'c':c_})

Snippet 4 – Generate the problem’s parameters

Second, we can compute the performance of the trajectory that results from local (static) optima.

import numpy as np
#--
def statOptPortf(cov,a):
 # Static optimal porftolio
 # Solution to the "unconstrained" portfolio optimization problem
 cov_inv=np.linalg.inv(cov)
 w=np.dot(cov_inv,a)
 w/=np.dot(np.dot(a.T,cov_inv),a) # np.dot(w.T,a)==1
 w/=abs(w).sum() # re-scale for full investment
 return w
#--

8

#2) Static optimal portfolios
w_stat=None
for params_ in params:
 w_=statOptPortf(cov=params_['cov'],a=params_['mean'])
 if w_stat is None:w_stat=w_.copy()
 else:w_stat=np.append(w_stat,w_,axis=1)
tcost_stat=evalTCosts(w_stat,params)
sr_stat=evalSR(params,w_stat,tcost_stat)
print 'static SR:',sr_stat

Snippet 5 – Compute and evaluate the static solution

Third, we compute the performance associated with the global dynamic optimal trajectory.

import numpy as np
#--
#3) Dynamic optimal portfolios
w_dyn=dynOptPort(params)
tcost_dyn=evalTCosts(w_dyn,params)
sr_dyn=evalSR(params,w_dyn,tcost_dyn)
print 'dynamic SR:',sr_dyn

Snippet 6 – Compute and evaluate the dynamic solution

The full code is listed in the appendix

6. REFERENCES

 Garleanu, N. and L. Pedersen (2012): “Dynamic Trading with Predictable Returns and
Transaction Costs”, Working paper.

 Johansson, F. (2012): “Efficient implementation of the Hardy-Ramanujan-Rademacher

formula”, LMS Journal of Computation and Mathematics 15, pp.341-359.

9

APPENDIX

A.1. INTEGER GLOBAL DYNAMIC PORTFOLIO OPTIMIZATION
This python 2.7 code implements the numerical example discussed in Section 5. The only
dependencies are numpy and itertools.

On 20150607 by MLdP <lopezdeprado@lbl.gov>
Example for global dynamic optimization
import numpy as np
from itertools import combinations_with_replacement,product
#--
def genMean(size):
 # Generate a random vector of means
 rMean=np.random.normal(size=(size,1))
 return rMean
#--
def genCovar(size):
 # Generate a random covariance matrix, as <A,A.T> of a random matrix
 rMat=np.random.rand(size,size)
 rCov=np.dot(rMat,rMat.T)
 return rCov
#--
def evalTCosts(w,params):
 # Compute t-costs of a particular trajectory
 tcost=np.zeros(w.shape[1])
 w_=np.zeros(shape=w.shape[0])
 for i in range(tcost.shape[0]):
 c_=params[i]['c']
 tcost[i]=(c_*abs(w[:,i]-w_)**.5).sum()
 w_=w[:,i].copy()
 return tcost
#--
def evalSR(params,w,tcost):
 # Evaluate SR over multiple horizons
 mean,cov=0,0
 for h in range(w.shape[1]):
 params_=params[h]
 mean+=np.dot(w[:,h].T,params_['mean'])[0]-tcost[h]
 cov+=np.dot(w[:,h].T,np.dot(params_['cov'],w[:,h]))
 sr=mean/cov**.5
 return sr
#--
def pigeonHole(k,n):
 # Pigeonhole problem (organize k objects in n slots)
 for j in combinations_with_replacement(xrange(n),k):
 r=[0]*n
 for i in j:
 r[i]+=1
 yield r
#--
def statOptPortf(cov,a):

10

 # Static optimal porftolio
 # Solution to the "unconstrained" portfolio optimization problem
 cov_inv=np.linalg.inv(cov)
 w=np.dot(cov_inv,a)
 w/=np.dot(np.dot(a.T,cov_inv),a) # np.dot(w.T,a)==1
 w/=abs(w).sum() # re-scale for full investment
 return w
#--
def getAllWeights(k,n):
 #1) Generate partitions
 parts,w=pigeonHole(k,n),None
 #2) Go through partitions
 for part_ in parts:
 w_=np.array(part_)/float(k) # abs(weight) vector
 for prod_ in product([-1,1],repeat=n): # add sign
 w_signed_=(w_*prod_).reshape(-1,1)
 if w is None:w=w_signed_.copy()
 else:w=np.append(w,w_signed_,axis=1)
 return w
#--
def dynOptPort(params,k=None):
 # Dynamic optimal portfolio
 #1) Generate partitions
 if k is None:k=params[0]['mean'].shape[0]
 n=params[0]['mean'].shape[0]
 w_all,sr=getAllWeights(k,n),None
 #2) Generate trajectories as cartesian products of weights with n repetitions
 for prod_ in product(w_all.T,repeat=len(params)):
 w_=np.array(prod_).T # concatenate product into a trajectory
 tcost_=evalTCosts(w_,params)
 sr_=evalSR(params,w_,tcost_) # evaluate trajectory
 if sr is None or sr<sr_: # store trajectory if better
 sr,w=sr_,w_.copy()
 return w
#--
def main():
 #1) Parameters
 size,horizon=3,2
 params=[]
 for h in range(horizon):
 mean_,cov_=genMean(size),genCovar(size)
 c_=np.random.uniform(size=cov_.shape[0])*np.diag(cov_)**.5
 params.append({'mean':mean_,'cov':cov_,'c':c_})
 #2) Static optimal portfolios
 w_stat=None
 for params_ in params:
 w_=statOptPortf(cov=params_['cov'],a=params_['mean'])
 if w_stat is None:w_stat=w_.copy()
 else:w_stat=np.append(w_stat,w_,axis=1)
 tcost_stat=evalTCosts(w_stat,params)
 sr_stat=evalSR(params,w_stat,tcost_stat)
 print 'static SR:',sr_stat

11

 #3) Dynamic optimal portfolios
 w_dyn=dynOptPort(params)
 tcost_dyn=evalTCosts(w_dyn,params)
 sr_dyn=evalSR(params,w_dyn,tcost_dyn)
 print 'dynamic SR:',sr_dyn
 return
#--
if __name__=='__main__':main()

Snippet 7 – Full implementation of the integer global dynamic optimization problem

